Imaging Considerations for Compression Fractures

- I. Use of Imaging in relation to evaluation and management of Vertebral Compression Fracture (VCF)
 - A. In those younger than 50 yo trauma is the most common etiology
 - B. Undiagnosed and untreated fractures (and underlying reason) = greater risk of additional fractures
- II. Plain Film Radiography (x-ray):
 - 1) Benefits, Limitations, Considerations
 - 2) Hallmark Xray findings of VCF
- III. CT scan of the spine:
 - A. Benefits, Limitations
 - B. Future Considerations
- IV. MRI of the spine:
 - A. MRI performed to evaluate VCF's and for evidence of underlying disease
 - 1) ole in evaluation/management
 - 2) Acute fractures= decreased T1- weighted signal (darker),
 - 3) T2 = high signal, reflecting edema, which normalizes over time
 - B. Malignant vs Benign MRI characteristics
 - C. Other Differential Diagnoses to rule out
 - D. MRI limitations: limited availability, cost, interpretation
- V. Bone scan (scintigraphy w/ Technitium99)
- VI. Notes:
 - A. Can also have MRI and bone scan findings, with no vertebral collapse and have a pain finding.
 - B. Weeks, or months later it is difficult to tell if the fracture the source of pain and still 'active'.
 - C. Persistent radio findings (bone scan uptake, MRI edema, presence of clefts, CT vacuum changes) are often predictive of ongoing pain.

Imaging in the Identification and Management of Spondylolysis

- I. Lumbar anatomy review
- II. Spondylolysis: defect in the pars interarticularis

- III. Spondylolysis
 - A. acute
 - B. chronic
 - C. congenital
- IV. Mechanism of Injury
 - A. trauma: hockey, football, acute hyperextensions
 - B. chronic hyperextension: gymnastics, cheerleading, tumbling
- V. Spondylolisthesis: anterior slippage of one vertebra on top of another
 - A. Pars defects= most common at L5
 - B. Degenerative

most common at L4

C. Facet joints change in orientation Grading 1-5

VI. Imaging

- A. Plain Film X-ray
 - 1. Obliques visualize the pars
 - 2. Additional x-ray view options
- B. CT Scan
- 1. gives the best bony detail
- 2. CT of the lumbar spine sensitive vs specific
- C. MRI
 - 1. Able to detect early stages of spondylolysis: marrow edema and microtrabecular fracture
 - 2. Bony detail may not be as good as CT, and so the pars defect, ie fracture line, may be more difficult to see in some cases with MRI
 - 3. MRI likely stays the imaging choice for most as it gives more soft tissue detail
 - 4. this allows for subsequent follow up and comparison to previous studies for evaluation of acuteness, via bone marrow edema.
- IV. SPECT bone scintigraphy
- V. Case Studies:
 - A. 41 yo female w/ 2 yr history of severe LBP post DC adjustment
 - B. 48 yo male w/ 30+ yrs of LBP on and off, known spondylolysis w/ listhesis
 - C. 15 yo male hockey player

Imaging Modalities in Daily Chiropractic Practice

- I. Use of Plain Film Radiographs (X-rays)
 - A. Indications
 - B. Radiographic signs of fracture
 - C. Flexion/Extension X-rays
 - D. Condition specific Films

- 1. Suspected IVF encroachment
 - a. Cervical
 - b. Lumbar
- 2. Suspected Pars defect
 - a. cervical
 - b. lumbar
- E. Collimate and shield to reduce dose
- F. Don't be afraid to re-x-ray for quality
- II. Review of MRI indications
 - A. patient is not improving with conservative care
 - B. suspect pathology
 - C. questionable finding on x-ray that may change management of patient
 - D. neurologic findings
- III. MRI options
 - A. High field
 - B. Open MRI
 - C. 3T
 - D. Whiplash protocol
 - E. Positional
 - F. Condition Specific
 - 1. MS
 - 2. TOS
 - 3. Shoulder
 - G. Soft tissue: the choice for most soft tissues
 - 1. knee: ligaments and mensicus
 - 2. tendons: hip, elbow, etc
 - 3. disc herniations
- IV. Uses of CT
 - A. Common use for DC's
 - B. Outside of our practices
- V. Ultrasound: When and where
- VI. Additional Imaging
 - A. HIDA GB scan
 - B. DEXA scan for osteoporosis
 - C. Abdominal Imaging
 - D. Vascular Imaging
- VII.Limitations of all Imaging